Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yong Zhang, Zhan-Ru Liao,* Dong-Fen Li and Xiang-Gao Meng

Department of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail:
zrliao@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.059$
$w R$ factor $=0.167$
Data-to-parameter ratio $=15.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

[2-(Benzotriazol-1-yl)ethyl][2-(benzotriazol-2-yl)ethyl]amine

In the title compound, $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{7}$, the dihedral angle between the two benzotriazole ring systems is $73.97(4)^{\circ}$. $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds link the molecules into a chain along the a axis. The packing is further stabilized by $\pi-\pi$ stacking interactions involving two benzotriazole ring systems.

Comment

Benzotriazole and its derivatives have good anti-wear properties, and they are well established corrosion inhibitors for copper and its alloys (Ren et al., 1994; Dugdale \& Cotton, 1963). In view of these properties, the title compound, (I), was synthesized according to the literature procedure (Liao et al., 1998), and its crystal stucture is reported here.

(I)

The structural investigation of (I) indicates that the geometry around atom N 4 is pyramidal (Fig. 1). The $\mathrm{Csp}{ }^{3}-\mathrm{N}$ bond distances range from 1.455 (3) to 1.460 (2) Å (Table 1). The dihedral angle between the two benzotriazole ring systems is $73.97(4)^{\circ}$. The $\mathrm{N}-\mathrm{Csp}^{3}-\mathrm{Csp} p^{3}-\mathrm{N}$ torsion angles [179.4 (2) and 58.6 (2) $)^{\circ}$] define the conformation of the central linkage.

In the crystal packing of (I), molecules translated one unit cell along the a direction are linked to form a chain via N $\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2 and Fig. 2). The packing is further stabilized by $\pi-\pi$ stacking interactions between the N1-benzotriazole ring system at (x, y, z) and the N5-benzotriazole ring system at the symmetry position ($x-1$, $\frac{1}{2}-y, z-\frac{1}{2}$) [centroid \cdots centroid distance 3.718 (2) Å].

Figure 1

The structure of (I). Displacement ellipsoids are drawn at the 30\% probability level.

Received 30 August 2005 Accepted 19 September 2005 Online 24 September 2005

Experimental

Compound (I) was synthesized according to the literature procedure of Liao et al. (1998). Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution at room temperature.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{7}$
$M_{r}=307.37$
Monoclinic, $P 2_{1} / c$
$a=6.2180(16) \AA$
$b=24.893(6) \AA$
$c=10.020(3) \AA$
$\beta=100.650(4))^{\circ}$
$V=1524.2(7) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\text {min }}=0.966, T_{\text {max }}=0.983$ 12667 measured reflections

$$
D_{x}=1.339 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 5137 reflections
$\theta=2.2-26.6^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.40 \times 0.30 \times 0.20 \mathrm{~mm}$

3313 independent reflections
2647 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-7 \rightarrow 7$
$k=-31 \rightarrow 31$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0783 P)^{2}\right. \\
& \quad+0.5802 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.00 \\
& \Delta \rho_{\max }=0.71 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.34 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.167$
$S=1.04$
3313 reflections
212 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 2
Part of the crystal packing of (I), showing a hydrogen-bonded (dashed lines) chain along the a axis and $\pi-\pi$ interactions. For clarity, only H atoms involved in the hydrogen bonding are shown. Atoms labelled with the suffixes a, b and c are generated by the symmetry operations $(1+x, y$, $z),(x-1, y, z)$ and $\left(x-1, \frac{1}{2}-y, z-\frac{1}{2}\right)$, respectively.

Atom $\mathrm{H} 4 A$ was located in a difference Fourier map and refined isotropically. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}_{\text {methylene }}=0.97 \AA$ and $\mathrm{C}-\mathrm{H}_{\text {aromatic }}=0.93 \AA$, and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. The three highest peaks in the final difference map indicated disorder for the C7-C8-N4 chain segment. However, refinement based on a disordered chain segment model led to very high displacement parameters.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PLATON.

The authors thank the Key Fundamental Project of China (grant No. 2002CCA00500) for financial support.

References

Bruker (2001). SMART (Version 5.628) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
Dugdale, I. \& Cotton, J. B. (1963). Corros. Sci. 3, 69-73
Liao, Z.-R., Xiang, D.-F., Li, D.-F., Mei, F.-S. \& Xiong, Y. (1998). Synth. React. Inorg. Met.-Org. Chem. 28, 1327-1341.
Ren, T., Xue, Q. \& Wang, H. (1994). Wear, 173, 167-170.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]
[^0]: Symmetry code: (i) $x+1, y, z$.

